6.
D. A. Spielman and N. Srivastava, “Graph Sparsification by Effective Resistances,” SIAM J. Comput., vol. 40, no. 6, Art. no. 6, 2011, doi: 10.1137/080734029.
7.
L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning Discrete Structures for Graph Neural Networks,” Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 1972–1982, Jun. 2019, [Online]. Available: Learning Discrete Structures for Graph Neural Networks.
10.
Y. Ye and S. Ji, Sparse Graph Attention Networks. 2019.
11.
E. Voudigari, N. Salamanos, T. Papageorgiou, and E. J. Yannakoudakis, “Rank degree: An efficient algorithm for graph sampling,” in 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016, San Francisco, CA, USA, August 18-21, 2016, 2016, pp. 120–129, doi: 10.1109/ASONAM.2016.7752223.
14.
V. Sadhanala, Y.-X. Wang, and R. J. Tibshirani, “Graph Sparsification Approaches for Laplacian Smoothing,” in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, 2016, vol. 51, pp. 1250–1259, [Online]. Available: Graph Sparsification Approaches for Laplacian Smoothing.
15.
Rong Y , Huang W , Xu T , et al. DropEdge: Towards Deep Graph Convolutional Networks on Node Classification[J]. 2019.