赞
踩
import numpy as np import pandas as pd import re from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error, r2_score import lightgbm as lgb import xgboost as xgb df = pd.read_csv('翼型数据集.csv', encoding='gbk') col_dict = dict(zip(set(df['翼型名称']), [i for i in range(len(set(df['翼型名称'])))])) df['翼型名称'] = df['翼型名称'].map(col_dict) print(f"the data shape is : {df.shape}") print(df.head()) print(df.columns) train_x, test_x = train_test_split(df, random_state=100, test_size=0.2, stratify=df['攻角 (degrees)']) train_y, test_y = train_x['攻角 (degrees)'], test_x['攻角 (degrees)'] train_x = train_x.drop('攻角 (degrees)', axis=1) test_x = test_x.drop('攻角 (degrees)', axis=1) # 模型训练gbm model = lgb.LGBMClassifier( boosting_type='gbdt', # 基学习器 gbdt:传统的梯度提升决策树; dart:Dropouts多重加性回归树 n_estimators=100, # 迭代次数 learning_rate=0.1, # 步长 max_depth=4, # 树的最大深度 min_child_weight=1, # 决定最小叶子节点样本权重和 # min_split_gain=0.1, # 在树的叶节点上进行进一步分区所需的最小损失减少 subsample=1, # 每个决策树所用的子样本占总样本的比例(作用于样本) colsample_bytree=1, # 建立树时对特征随机采样的比例(作用于特征)典型值:0.5-1 random_state=27, # 指定随机种子,为了复现结果 importance_type='gain', # 特征重要性的计算方式,split:分隔的总数; gain:总信息增益 objective='multiclass', ) model.fit(train_x, train_y, eval_metric="auc_mu", verbose=10, \ eval_set=[(train_x, train_y), (test_x, test_y)], \ ) print(f"the mae is: ", mean_absolute_error([int(i) for i in model.predict(test_x)], test_y)) print(pd.DataFrame({"predict":[int(i) for i in model.predict(test_x)], 'real':test_y})) # 模型训练xgb xgb_Regressor = xgb.XGBClassifier( learning_rate=0.01, n_estimators=100, max_depth=3, min_child_weight=1, gamma=0, objective='multiclass', subsample=0.8, colsample_bytree=0.8, nthread=4, scale_pos_weight=1, seed=27 ) xgb_Regressor.fit(train_x, train_y, eval_metric="auc", verbose=10, eval_set=[(train_x, train_y), (test_x, test_y)], ) print(f"the mae is: ", mean_absolute_error(xgb_Regressor.predict(test_x), test_y))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。