赞
踩
NLP通过构建神经网络模型,可以将源语言的文本自动翻译成目标语言,实现跨语言的信息传递。
- import tensorflow as tf
- from tensorflow.keras.models import Sequential
- from tensorflow.keras.layers import Embedding, LSTM, Dense
-
- model = Sequential([
- Embedding(input_dim=vocab_size, output_dim=embedding_dim),
- LSTM(units=hidden_units),
- Dense(output_dim=vocab_size, activation='softmax')
- ])
NLP可以用于文本分类,如情感分析、新闻分类等。通过训练模型,计算机可以自动判断一段文本属于哪个类别。
- from tensorflow.keras.preprocessing.text import Tokenizer
- from tensorflow.keras.preprocessing.sequence import pad_sequences
- from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense
-
- tokenizer = Tokenizer(num_words=vocab_size)
- tokenizer.fit_on_texts(texts)
- sequences = tokenizer.texts_to_sequences(texts)
- padded_sequences = pad_sequences(sequences, maxlen=max_sequence_length)
-
- model = Sequential([
- Embedding(input_dim=vocab_size, output_dim=embedding_dim),
- Conv1D(filters=num_filters, kernel_size=filter_size, activation='relu'),
- GlobalMaxPooling1D(),
- Dense(units=num_classes, activation='softmax')
- ])
命名实体识别是从文本中识别出人名、地名、组织名等特定实体的任务。深度学习模型可以通过学习上下文信息,自动识别出这些实体。
- from transformers import pipeline
-
- nlp = pipeline("ner")
- results = nlp("Apple is a tech company based in California.")
-
- for entity in results:
- print(f"Entity: {entity['word']}, Type: {entity['entity']}")
NLP可以用于构建智能问答系统,使计算机能够根据问题从大量文本中寻找答案。
- from transformers import pipeline
-
- nlp = pipeline("question-answering")
- context = "Hugging Face is a company that specializes in Natural Language Processing."
-
- question = "What does Hugging Face specialize in?"
- answer = nlp(question=question, context=context)
- print(answer['answer'])
循环神经网络(RNN)和Transformer可以用于生成文章、对话等文本内容。
- import tensorflow as tf
- from tensorflow.keras.layers import Embedding, LSTM, Dense
-
- model = tf.keras.Sequential([
- Embedding(input_dim=vocab_size, output_dim=embedding_dim),
- LSTM(units=hidden_units, return_sequences=True),
- Dense(output_dim=vocab_size, activation='softmax')
- ])
情感分析是判断文本情感极性的任务,如正面、负面、中性。深度学习模型可以从文本中提取情感特征。
- from transformers import pipeline
-
- nlp = pipeline("sentiment-analysis")
- text = "I love this product!"
- sentiment = nlp(text)[0]
- print(f"Sentiment: {sentiment['label']}, Confidence: {sentiment['score']}")
通过NLP,计算机可以生成逼真的语言,如对话、诗歌、故事等。
- from transformers import GPT2LMHeadModel, GPT2Tokenizer
-
- tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
- model = GPT2LMHeadModel.from_pretrained("gpt2")
-
- input_text = "Once upon a time"
- input_ids = tokenizer.encode(input_text, return_tensors="pt")
- output = model.generate(input_ids, max_length=50, num_return_sequences=5)
-
- for sequence in output:
- generated_text = tokenizer.decode(sequence, skip_special_tokens=True)
- print(generated_text)
NLP可用于信息检索,通过匹配查询和文本内容,返回相关的信息。同时,也可以生成文本摘要,将长文本精炼成简洁的摘要。
- from transformers import pipeline
-
- nlp = pipeline("summarization")
- text = "Bert is a powerful NLP model developed by Google."
- summary = nlp(text, max_length=50, min_length=10)[0]['summary_text']
- print(summary)
NLP可以用于文本自动纠错和修复,帮助用户更准确地表达意思。
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
-
- tokenizer = AutoTokenizer.from_pretrained("yjernite/bart_eli5")
- model = AutoModelForSeq2SeqLM.from_pretrained("yjernite/bart_eli5")
-
- input_text = "I have an apple."
- input_ids = tokenizer.encode(input_text, return_tensors="pt")
- output = model.generate(input_ids)
-
- corrected_text = tokenizer.decode(output[0], skip_special_tokens=True)
- print(corrected_text)
利用NLP,可以构建智能对话系统,使计算机能够与用户进行自然而流畅的对话。
- from transformers import pipeline
-
- nlp = pipeline("conversational")
- conversation = [
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": "What's the weather like today?"}
- ]
- response = nlp(conversation)
- print(response[0]['content'])
但本人更偏向于情感分析,文本情感分析:又称意见挖掘、倾向性分析等。简单而言,是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。对于意见、情感或观点,我们进行如下建模:对于给定的文本d,任务从文本中获取(e,a,s,h,t)五元组,即态度持有者h在t时间(条件下)对实体e的a方面有观点s。传统情感分析任务主要为情感分类,即确定s的极性。从分析的粒度上,情感分析可以分为文章级(document level)、句子级(sentence level)和单词级(word level)情感分析,其中句子级情感分析在前沿领域有细粒度的情感分析。细粒度的情感分析在完成传统任务情感分类的基础上,还可以确定观点(情感)s针对了对象的哪一方面。例如,“这家餐厅披萨很好吃但是服务太差了”这句话,通过细粒度的分析可以提取出(披萨,+),(服务,-)。细粒度的情感分析可以进一步细分为三个小任务,分别是对象抽取(aspect extraction),对象级情感分类(aspect-level sentiment analysis)以及通过单个模型完成上述两个任务的方法(协同训练)。
参考文献:https://blog.csdn.net/qq_43546721/article/details/132524486
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。