赞
踩
思路:
- #include <bits/stdc++.h>
- using namespace std;
- #define int long long
- #define pb push_back
- #define fi first
- #define se second
- #define lson p << 1
- #define rson p << 1 | 1
- const int maxn = 1e6 + 5, inf = 1e18, maxm = 4e4 + 5;
- const int N = sqrt(1e9) + 1;
- const int mod = 1e9 + 7;
- // const int mod = 998244353;
- //const __int128 mod = 212370440130137957LL;
- // int a[505][5005];
- // bool vis[505][505];
-
- int a[2][maxn], b[maxn];
- bool vis[maxn];
- string s;
- int n, m;
-
- struct Node{
- int val, id;
- bool operator<(const Node &u)const{
- return val < u.val;
- }
- };
- // Node c[maxn];
-
- int ans[maxn];
- int pre[maxn];
-
- int f[maxn][2]; //f[j][i]为从起点开始,蛇皮走位到第j列,第i行的最长等待时间
- int g[maxn][2];//g[j][i]为从(i,j)向右开始钩子走位,最后回到(i ^ 1, j)的最长等待时间
- //long long ? maxn ? n? m?
- void solve(){
- int res = 0;
- int q, k;
- cin >> m;
- // int mx = 0, mn = inf;
- for(int i = 0; i < 2; i++){
- for(int j = 1; j <= m; j++){
- cin >> a[i][j];
- }
- }
- //设在起点等待时间为t,到达(i, j)是第k个到达的格子,那么若t + k >= a[i][j] + 2 - k,
- //(题解为t + k >= a[i][j] + 1, 是因为最后题解答案 + 2 * m,实际是2 * m - 1)
- //则在起点等待t秒后,不考虑其他格子的话,可以顺利到达格子(i, j)
- f[0][0] = f[0][1] = -inf;
- f[1][0] = 0;//起点比较特殊,不适用 t + k >= a[i][j] + 2 - k, 单独更新
- f[1][1] = a[1][1] + 2 - 2;//顺便更新掉
- g[m + 1][0] = g[m + 1][1] = -inf;
- for(int j = 2; j <= m; j++){
- f[j][j % 2] = max({f[j - 1][(j - 1) % 2], a[j % 2][j] + 2 - 2 * j, a[j % 2 ^ 1][j] + 2 - (2 * j - 1)});
- // cout << j << ' ' << j % 2 << ' ' << f[j][j % 2] << '\n';
- }
-
- for(int i = 0; i < 2; i++){
- for(int j = m; j >= 2; j--){//注意j >= 2, 因为当j == 1时,整个路径为钩子,就牵扯到起点,得单独更新
- g[j][i] = max({g[j + 1][i] - 1, a[i][j] + 2 - 1, a[i ^ 1][j] + 2 - 2 * (m - j + 1)});
- // cout << j << ' ' << i << ' ' << g[j][i] << '\n';
- }
- }
- res = inf;
- for(int j = 1; j <= m; j++){
- int tmp = max({0LL, f[j][j % 2], g[j + 1][j % 2] - 2 * j});//拼接 蛇和钩子
- res = min(res, tmp);
- }
- res = min(res, max({0LL, g[2][0] - 1, a[1][1] + 2 - (2 * m)}));//考虑整个路径为钩子的情况
- cout << res + 2 * m - 1 << '\n';
- }
-
- signed main(){
- ios::sync_with_stdio(0);
- cin.tie(0);
-
- int T = 1;
- cin >> T;
- while (T--)
- {
- solve();
- }
- return 0;
- }

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。