赞
踩
原题链接:64. 最小路径和
分别向右或下进行探查
class Solution { public: int res = INT_MAX; void backtracking(vector<vector<int>>& grid, int x, int y, int pathSum) { // 超出边界,返回 if(x >= grid.size() || y >= grid[0].size()) return ; pathSum += grid[x][y]; if(x == grid.size() - 1 && y == grid[0].size() - 1) { res = min(res, pathSum); return ; } for(int i = x; i < grid.size(); i++) { for(int j = y; j < grid[0].size(); j++) { backtracking(grid, x + 1, y, pathSum); backtracking(grid, x, y + 1, pathSum); } } } int minPathSum(vector<vector<int>>& grid) { backtracking(grid, 0, 0, 0); return res; } };
此方式会超时。
对于二维数组求最优解,常用的方式就是递归+备忘录,也就是动态规划,而递归可以用迭代实现。
(1)dp[i][j]: 到达(i, j)处时,最短路径的长度
(2)递推公式: d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) + g r i d [ i ] [ j ] dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] dp[i][j]=min(dp[i−1][j],dp[i][j−1])+grid[i][j],因为只能往右或下走,因此到达(i, j)处时,只可能有两条路过来,此时就找已有的两条路中最短路径的那一条。
(3)dp数组初始化: dp[i][0] = dp[i - 1][0] + grid[i][0] , , ,dp[0][j] = dp[0][j - 1] + grid[0][j],边界上只会顺着一条路走下来,这一种情况(因为只能往下或者往右走)。dp[0][0] = grid[0][0]。
(4)遍历顺序: 从上到下,从左到右,一步一步逼近终点。
(5)举例: (省略)
class Solution { public: int minPathSum(vector<vector<int>>& grid) { int n = grid.size(), m = grid[0].size(); vector<vector<int>> dp(n, vector<int>(m)); dp[0][0] = grid[0][0]; for(int i = 1; i < n; i++) dp[i][0] = dp[i - 1][0] + grid[i][0]; for(int i = 1; i < m; i++) dp[0][i] = dp[0][i - 1] + grid[0][i]; for(int i = 1; i < n; i++) { for(int j = 1; j < m; j++) { dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]; } } return dp[n - 1][m - 1]; } };
Python
class Solution: def minPathSum(self, grid: List[List[int]]) -> int: m, n = len(grid), len(grid[0]) dp = [[0] * n for _ in range(m)] dp[0][0] = grid[0][0] for i in range(1, m): dp[i][0] = dp[i - 1][0] + grid[i][0] for i in range(1, n): dp[0][i] = dp[0][i - 1] + grid[0][i] for i in range(1, m): for j in range(1, n): dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] return dp[m - 1][n - 1]
参考文章:64. 最小路径和、最小路径和、动态规划之最小路径和
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。