赞
踩
一、插入排序(Insertion Sort)
插入排序是往有序的数组中快速插入一个新的元素。把要排序的数组分为了两个部分, 一部分是数组的全部元素, 另一部分是待插入的元素; 先将第一部分排序完成, 然后再插入这个元素. 其中第一部分的排序也是通过再次拆分为两部分来进行的.
/** * 插入排序 * * 1. 从第一个元素开始,该元素可以认为已经被排序 * 2. 取出下一个元素,在已经排序的元素序列中从后向前扫描 * 3. 如果该元素(已排序)大于新元素,将该元素移到下一位置 * 4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置 * 5. 将新元素插入到该位置后 * 6. 重复步骤2~5 * @param arr 待排序数组 */ public static void insertionSort(int[] arr){ for( int i=0; i<arr.length-1; i++ ) { for( int j=i+1; j>0; j-- ) { if( arr[j-1] <= arr[j] ) break; int temp = arr[j]; //交换操作 arr[j] = arr[j-1]; arr[j-1] = temp; System.out.println("Sorting: " + Arrays.toString(arr)); } }
二、希尔排序(Shell Sort)
递减增量排序算法,是插入排序的一种高速而稳定的改进版本,先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。
/** * 希尔排序(官方版) * * 1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;(注意此算法的gap取值) * 2. 按增量序列个数k,对序列进行k 趟排序; * 3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。 * 仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。 * @param arr 待排序数组 */ public static void shell_sort(int[] arr) { int gap = 1, i, j, len = arr.length; int temp; while (gap < len / 3) gap = gap * 3 + 1; // <O(n^(3/2)) by Knuth,1973>: 1, 4, 13, 40, 121, ... for (; gap > 0; gap /= 3) { for (i = gap; i < len; i++) { temp = arr[i]; for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap) arr[j + gap] = arr[j]; arr[j + gap] = temp; } } }
三、选择排序(Select Sort)
选择排序的基本思想:比较 + 交换,在未排序序列中找到最小(大)元素,存放到未排序序列的起始位置。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。
/** * 选择排序 * * 1. 从待排序序列中,找到关键字最小的元素; * 2. 如果最小元素不是待排序序列的第一个元素,将其和第一个元素互换; * 3. 从余下的 N - 1 个元素中,找出关键字最小的元素,重复①、②步,直到排序结束。 * 仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。 * @param arr 待排序数组 */ public class SelectSort { public static void main(String[] args) { int[] array = {52,63,14,59,68,35,8,67,45,99}; selectSort(array); for (int i : array) { System.out.print(i+" "); } } public static void selectSort(int[] arr){ for(int i = 0; i < arr.length-1; i++){ int min = i; for(int j = i+1; j <arr.length-1;j++){ if(arr[j]<arr[min]){ min = j; } } if(min!=i){ swap(arr, i, min); } } } //完成数组两元素间交换 public static void swap(int[] arr,int a,int b){ int temp = arr[a]; arr[a] = arr[b]; arr[b] = temp; } }
四、堆排序(Heap Sort)
堆的定义如下:n个元素的序列{k1,k2,···,kn},当且仅当满足下关系时,称之为堆。
ki <= k(2i) 且 ki <= k(2i+1) 或: ki >= k(2i) 且 ki >= k(2i+1)
把此序列对应的二维数组看成一个完全二叉树。那么堆的含义就是:完全二叉树中任何一个非叶子节点的值均不大于(或不小于)其左,右孩子节点的值。由上述性质可知大顶堆的堆顶的关键字肯定是所有关键字中最大的,小顶堆的堆顶的关键字是所有关键字中最小的。因此我们可使用大顶堆进行升序排序, 使用小顶堆进行降序排序。堆排序的过程就是将待排序的序列构造成一个堆,选出堆中最大的移走,再把剩余的元素调整成堆,找出最大的再移走,重复直至有序。
从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆函数,二是反复调用建堆函数以选择出剩余未排元素中最大的数来实现排序的函数。
总结起来就是定义了以下几种操作:
最大堆调整(Max_Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点
创建最大堆(Build_Max_Heap):将堆所有数据重新排序
堆排序(HeapSort):移除位在第一个数据的根节点,并做最大堆调整的递归运算
对于堆节点的访问:
父节点i的左子节点在位置:(2*i+1);
父节点i的右子节点在位置:(2*i+2);
子节点i的父节点在位置:floor((i-1)/2);
/** * 堆排序 * * 1. 先将初始序列K[1..n]建成一个大顶堆, 那么此时第一个元素K1最大, 此堆为初始的无序区. * 2. 再将关键字最大的记录K1 (即堆顶, 第一个元素)和无序区的最后一个记录 Kn 交换, 由此得到新的无序区K[1..n−1]和有序区K[n], 且满足K[1..n−1].keys⩽K[n].key * 3. 交换K1 和 Kn 后, 堆顶可能违反堆性质, 因此需将K[1..n−1]调整为堆. 然后重复步骤②, 直到无序区只有一个元素时停止. * @param arr 待排序数组 */ public static void heapSort(int[] arr){ for(int i = arr.length; i > 0; i--){ max_heapify(arr, i); int temp = arr[0]; //堆顶元素(第一个元素)与Kn交换 arr[0] = arr[i-1]; arr[i-1] = temp; } } private static void max_heapify(int[] arr, int limit){ if(arr.length <= 0 || arr.length < limit) return; int parentIdx = limit / 2; for(; parentIdx >= 0; parentIdx--){ if(parentIdx * 2 >= limit){ continue; } int left = parentIdx * 2; //左子节点位置 int right = (left + 1) >= limit ? left : (left + 1); //右子节点位置,如果没有右节点,默认为左节点位置 int maxChildId = arr[left] >= arr[right] ? left : right; if(arr[maxChildId] > arr[parentIdx]){ //交换父节点与左右子节点中的最大值 int temp = arr[parentIdx]; arr[parentIdx] = arr[maxChildId]; arr[maxChildId] = temp; } } System.out.println("Max_Heapify: " + Arrays.toString(arr)); }
五、冒泡排序(Bubble Sort)
冒泡排序(Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
/** * 冒泡排序 * * ①. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。 * ②. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。 * ③. 针对所有的元素重复以上的步骤,除了最后一个。 * ④. 持续每次对越来越少的元素重复上面的步骤①~③,直到没有任何一对数字需要比较。 * @param arr 待排序数组 */ public static void bubbleSort(int[] arr){ for (int i = arr.length - 1; i > 0; i--) { //外层循环移动游标 for(int j = 0; j < i; j++){ //内层循环遍历游标及之后(或之前)的元素 if(arr[j] > arr[j+1]){ int temp = arr[j]; arr[j] = arr[j+1]; arr[j+1] = temp; System.out.println("Sorting: " + Arrays.toString(arr)); } } } }
六、快速排序(Quick Sort)
快速排序(Quicksort)是对冒泡排序的一种改进,借用了分治的思想。首先在数组中选择一个基准点(该基准点的选取可能影响快速排序的效率,后面讲解选取的方法),然后分别从数组的两端扫描数组,设两个指示标志(lo指向起始位置,hi指向末尾),首先从后半部分开始,如果发现有元素比该基准点的值小,就交换lo和hi位置的值,然后从前半部分开始扫秒,发现有元素大于基准点的值,就交换lo和hi位置的值,如此往复循环,直到lo>=hi,然后把基准点的值放到hi这个位置。一次排序就完成了。以后采用递归的方式分别对前半部分和后半部分排序,当前半部分和后半部分均有序时该数组就自然有序了。
private <TextendsComparable<?superT>> void quickSort(T[]targetArr,intstart,intend) { inti=start,j=end; Tkey=targetArr[start]; while(i<j) { /*按j--方向遍历目标数组,直到比key小的值为止*/ while(j>i&&targetArr[j].compareTo(key)>=0) { j--; } if(i<j) { /*targetArr[i]已经保存在key中,可将后面的数填入*/ targetArr[i]=targetArr[j]; i++; } /*按i++方向遍历目标数组,直到比key大的值为止*/ while(i<j&&targetArr[i].compareTo(key)<=0) /*此处一定要小于等于零,假设数组之内有一亿个1,0交替出现的话,而key的值又恰巧是1的话,那么这个小于等于的作用就会使下面的if语句少执行一亿次。*/ { i++; } if(i<j) { /*targetArr[j]已保存在targetArr[i]中,可将前面的值填入*/ targetArr[j]=targetArr[i]; j--; } } /*此时i==j*/ targetArr[i]=key;//应加判断 /*递归调用,把key前面的完成排序*/ this.quickSort(targetArr,start,i-1); /*递归调用,把key后面的完成排序*/ this.quickSort(targetArr,j+1,end); //两个递归应加判断 }
七、归并排序(Merging Sort)
归并排序是建立在归并操作上的一种有效的排序算法,1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
/** * 归并排序(递归) * * ①. 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素; * ②. 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素; * ③. 重复步骤②,直到所有元素排序完毕。 * @param arr 待排序数组 */ public static int[] mergingSort(int[] arr){ if(arr.length <= 1) return arr; int num = arr.length >> 1; int[] leftArr = Arrays.copyOfRange(arr, 0, num); int[] rightArr = Arrays.copyOfRange(arr, num, arr.length); System.out.println("split two array: " + Arrays.toString(leftArr) + " And " + Arrays.toString(rightArr)); return mergeTwoArray(mergingSort(leftArr), mergingSort(rightArr)); //不断拆分为最小单元,再排序合并 } private static int[] mergeTwoArray(int[] arr1, int[] arr2){ int i = 0, j = 0, k = 0; int[] result = new int[arr1.length + arr2.length]; //申请额外的空间存储合并之后的数组 while(i < arr1.length && j < arr2.length){ //选取两个序列中的较小值放入新数组 if(arr1[i] <= arr2[j]){ result[k++] = arr1[i++]; }else{ result[k++] = arr2[j++]; } } while(i < arr1.length){ //序列1中多余的元素移入新数组 result[k++] = arr1[i++]; } while(j < arr2.length){ //序列2中多余的元素移入新数组 result[k++] = arr2[j++]; } System.out.println("Merging: " + Arrays.toString(result)); return result; }
八、基数排序(Radix Sort)
基数排序是基于元素值的每个位上的字符来排序的。 对于数字而言就是分别基于个位,十位, 百位或千位等等数字来排序。基数排序(Radix sort)是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
基数排序按照优先从高位或低位来排序有两种实现方案:
MSD(Most significant digital) 从最左侧高位开始进行排序。先按k1排序分组, 同一组中记录, 关键码k1相等, 再对各组按k2排序分成子组, 之后, 对后面的关键码继续这样的排序分组, 直到按最次位关键码kd对各子组排序后. 再将各组连接起来, 便得到一个有序序列。MSD方式适用于位数多的序列。
LSD (Least significant digital)从最右侧低位开始进行排序。先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。LSD方式适用于位数少的序列。
/** * 基数排序(LSD 从低位开始) * * 基数排序适用于: * (1)数据范围较小,建议在小于1000 * (2)每个数值都要大于等于0 * * ①. 取得数组中的最大数,并取得位数; * ②. arr为原始数组,从最低位开始取每个位组成radix数组; * ③. 对radix进行计数排序(利用计数排序适用于小范围数的特点); * @param arr 待排序数组 */ public static void radixSort(int[] arr){ if(arr.length <= 1) return; //取得数组中的最大数,并取得位数 int max = 0; for(int i = 0; i < arr.length; i++){ if(max < arr[i]){ max = arr[i]; } } int maxDigit = 1; while(max / 10 > 0){ maxDigit++; max = max / 10; } System.out.println("maxDigit: " + maxDigit); //申请一个桶空间 int[][] buckets = new int[10][arr.length]; int base = 10; //从低位到高位,对每一位遍历,将所有元素分配到桶中 for(int i = 0; i < maxDigit; i++){ int[] bktLen = new int[10]; //存储各个桶中存储元素的数量 //分配:将所有元素分配到桶中 for(int j = 0; j < arr.length; j++){ int whichBucket = (arr[j] % base) / (base / 10); buckets[whichBucket][bktLen[whichBucket]] = arr[j]; bktLen[whichBucket]++; } //收集:将不同桶里数据挨个捞出来,为下一轮高位排序做准备,由于靠近桶底的元素排名靠前,因此从桶底先捞 int k = 0; for(int b = 0; b < buckets.length; b++){ for(int p = 0; p < bktLen[b]; p++){ arr[k++] = buckets[b][p]; } } System.out.println("Sorting: " + Arrays.toString(arr)); base *= 10; } }
时间复杂度:
(1). 平方阶O(n²)排序:各类简单排序:直接插入、直接选择和冒泡排序;
(2). 线性对数阶O(nlog₂n)排序:快速排序、堆排序和归并排序;
(3). O(n1+§))排序,§是介于0和1之间的常数:希尔排序
(4). 线性阶O(n)排序:基数排序,此外还有桶、箱排序。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。