赞
踩
源码:https://github.com/tfwcn/AI
Word.txt为用到的字符集,本文用的只包含训练集里的字。
ai.txt为训练素材,格式:问题1\t回答1\n问题2\t回答2\n
LSTM原理图:
σ代表:sigmoid函数
训练过程图:
代码如下:
- import keras as K
- import matplotlib.pyplot as plt
- import numpy as np
- import math
- import os
-
- batch_size = 50 # Batch size for training. 训练批次大小
- epochs = 1000 # Number of epochs to train for. 训练多少回
- latent_dim = 128 # Latent dimensionality of the encoding space. 隐藏神经元数量
- num_samples = 10000 # Number of samples to train on. 训练数量
- max_encoder_seq_length = 256 # 句子最大长度
-
-
- word_file = open('word.txt', 'r', encoding='UTF-8')
- alphabet = word_file.read() # 2500
- # alphabet += 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' # 英文数字
- # alphabet += ',./;\'[]\\-=`<>?:"{+}|_)(*&^%$#@!~` ' # 标点
- # alphabet += ',。《》?;‘’:“”【】—()…¥!·' # 中文标点
- # alphabet += '\t\n' # 开头结束标志
- word_file.close()
- print('word', len(alphabet), alphabet)
-
-
- # 训练数据集
- train_file = open('ai.txt', 'r', encoding='UTF-8')
- sentences = train_file.read().split('\n')
- train_file.close()
- question_texts = []
- answer_texts = []
- for senterce in sentences:
- if len(senterce) == 0:
- continue
- # 补全缺失文字,需重新运行
- for t, char in enumerate(senterce):
- if alphabet.find(char) == -1:
- f2 = open('word.txt', 'w', encoding='utf-8')
- f2.truncate() # 清空文件
- alphabet += char
- f2.write(alphabet)
- f2.close()
- print('senterce', senterce.split('\t'))
- question_text, answer_text = senterce.split('\t')
- # \t 作为开头标识
- # \n 作为结尾标识
- question_text = '\t' + question_text + '\n'
- answer_text = '\t' + answer_text + '\n'
- # question_text = question_text.ljust(max_encoder_seq_length, '\0')
- # answer_text = answer_text.ljust(max_encoder_seq_length, '\0')
- question_texts.append(question_text)
- answer_texts.append(answer_text)
- # print('question_texts', question_texts)
- # print('answer_texts', answer_texts)
-
-
- # 字符与序号对应的字典
- char_to_int = dict((c, i) for i, c in enumerate(alphabet))
- int_to_char = dict((i, c) for i, c in enumerate(alphabet))
- # print('char_to_int', char_to_int)
- # print('int_to_char', int_to_char)
-
-
- # 编码器字符数量
- num_encoder_tokens = len(alphabet)
- # 解码器字符数量
- num_decoder_tokens = len(alphabet)
-
- # 样本数
- print('Number of samples:', len(question_texts))
-
- # 输入
- encoder_input_data = np.zeros(
- (len(question_texts), max_encoder_seq_length, num_encoder_tokens),
- dtype='float32')
- # 输出
- decoder_input_data = np.zeros(
- (len(question_texts), max_encoder_seq_length, num_decoder_tokens),
- dtype='float32')
- # 下一个时间点的输出
- decoder_target_data = np.zeros(
- (len(question_texts), max_encoder_seq_length, num_decoder_tokens),
- dtype='float32')
-
- # enumerate返回下标与元素,zip把两个列表打包成一个个元组组成的列表
- # 下面循环生成训练数据,转one hot
- for i, (input_text, target_text) in enumerate(zip(question_texts, answer_texts)):
- # print('input_text', input_text)
- # print('target_text', target_text)
- for t, char in enumerate(input_text):
- encoder_input_data[i, t, char_to_int[char]] = 1.
- for t, char in enumerate(target_text):
- # decoder_target_data is ahead of decoder_input_data by one timestep
- decoder_input_data[i, t, char_to_int[char]] = 1.
- # 翻译时下一个时间点的输入数据
- if t > 0:
- # decoder_target_data will be ahead by one timestep
- # and will not include the start character.
- decoder_target_data[i, t-1, char_to_int[char]] = 1.
-
- print('encoder_input_data', len(encoder_input_data))
- print('decoder_input_data', len(decoder_input_data))
-
-
- # ==================编码器=====================
- # Define an input sequence and process it.
- # 输入一句话
- encoder_inputs = K.Input(shape=(None, num_encoder_tokens))
- # return_state返回状态,用于状态保持
- encoder = K.layers.LSTM(latent_dim, return_sequences=True,
- return_state=True, activation=K.activations.tanh)
- encoder2 = K.layers.LSTM(latent_dim, return_sequences=False,
- return_state=True, activation=K.activations.tanh)
- encoder_outputs, state_h, state_c = encoder(encoder_inputs)
- encoder_outputs2, state_h2, state_c2 = encoder2(encoder_outputs)
- # We discard `encoder_outputs` and only keep the states.
- encoder_states = [state_h, state_c]
- encoder_states2 = [state_h2, state_c2]
- # ==================编码器 end=====================
-
- # ==================解码器=====================
- # Set up the decoder, using `encoder_states` as initial state.
- # 预测正确答案作为输入
- decoder_inputs = K.Input(shape=(None, num_decoder_tokens))
- # We set up our decoder to return full output sequences,
- # and to return internal states as well. We don't use the
- # return states in the training model, but we will use them in inference.
- # return_sequences返回完整序列
- decoder_lstm = K.layers.LSTM(
- latent_dim, return_sequences=True, return_state=True, activation=K.activations.tanh)
- decoder_lstm2 = K.layers.LSTM(
- latent_dim, return_sequences=True, return_state=True, activation=K.activations.tanh)
- decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
- initial_state=encoder_states)
- decoder_outputs2, _, _ = decoder_lstm2(decoder_outputs,
- initial_state=encoder_states2)
- decoder_dense = K.layers.Dense(
- num_decoder_tokens, activation=K.activations.softmax)
- # 输出值,真正答案
- decoder_outputs = decoder_dense(decoder_outputs2)
- # ==================解码器 end=====================
- # 编码 解码
- # \t h i \n \t 你 好 \n
- # LSTM LSTM
- # 你 好 \n
- # Define the model that will turn
- # `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
- model = K.Model([encoder_inputs, decoder_inputs], decoder_outputs)
- if os.path.exists('s2s.h5'):
- print('加载模型')
- model.load_weights('s2s.h5')
- # Run training
- # 训练
- # encoder_input_data:输入要翻译的语句
- # decoder_input_data:输入解码器的结果\t开头
- # decoder_target_data:真正的翻译结果
- model.compile(K.optimizers.RMSprop(),
- loss=[K.losses.categorical_crossentropy],
- metrics=[K.metrics.categorical_crossentropy])
- # model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
- # batch_size=batch_size,
- # epochs=epochs,
- # validation_split=0.2)
- model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
- batch_size=batch_size,
- epochs=epochs)
- # Save model
- model.save_weights('s2s.h5')
-
- # Next: inference mode (sampling). 下一步,推理模式(抽样),识别
- # Here's the drill:
- # 1) encode input and retrieve initial decoder state
- # 2) run one step of decoder with this initial state
- # and a "start of sequence" token as target.
- # Output will be the next target token
- # 3) Repeat with the current target token and current states
-
- # Define sampling models
- # 编码模型,encoder_states
- encoder_model = K.Model(encoder_inputs, encoder_states + encoder_states2)
-
- # 解码模型
- # 状态输入
- decoder_state_input_h = K.Input(shape=(latent_dim,))
- decoder_state_input_c = K.Input(shape=(latent_dim,))
- decoder_state_input_h2 = K.Input(shape=(latent_dim,))
- decoder_state_input_c2 = K.Input(shape=(latent_dim,))
- decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
- decoder_states_inputs2 = [decoder_state_input_h2, decoder_state_input_c2]
- # 训练后的LSTM,
- decoder_outputs, state_h, state_c = decoder_lstm(
- decoder_inputs, initial_state=decoder_states_inputs)
- decoder_states = [state_h, state_c]
- decoder_outputs2, state_h2, state_c2 = decoder_lstm2(
- decoder_outputs, initial_state=decoder_states_inputs2)
- decoder_states2 = [state_h2, state_c2]
- decoder_outputs = decoder_dense(decoder_outputs2)
- # 输入[decoder_inputs, decoder_state_input_h, decoder_state_input_c]
- # 输出[decoder_outputs, state_h, state_c]
- decoder_model = K.Model(
- [decoder_inputs] + decoder_states_inputs + decoder_states_inputs2,
- [decoder_outputs] + decoder_states + decoder_states2)
-
-
- def decode_sequence(input_seq):
- # Encode the input as state vectors.
- # 编码,抽象概念
- states_value = encoder_model.predict(input_seq)
-
- # Generate empty target sequence of length 1.
- target_seq = np.zeros((1, 1, num_decoder_tokens))
- # Populate the first character of target sequence with the start character.
- target_seq[0, 0, char_to_int['\t']] = 1.
-
- # Sampling loop for a batch of sequences
- # (to simplify, here we assume a batch of size 1).
- stop_condition = False
- decoded_sentence = ''
- while not stop_condition:
- output_tokens, h, c, h2, c2 = decoder_model.predict(
- [target_seq] + states_value)
-
- # 对应字符下标,把预测出的字符拼成字符串
- # Sample a token
- sampled_token_index = np.argmax(output_tokens[0, -1, :])
- sampled_char = int_to_char[sampled_token_index]
- decoded_sentence += sampled_char
-
- # 句子结束
- # Exit condition: either hit max length
- # or find stop character.
- if (sampled_char == '\n' or
- len(decoded_sentence) > max_encoder_seq_length):
- stop_condition = True
-
- # Update the target sequence (of length 1).
- # 当前字符,传递到下一次预测
- target_seq = np.zeros((1, 1, num_decoder_tokens))
- target_seq[0, 0, sampled_token_index] = 1.
-
- # Update states
- # 当前状态,传递到下一次预测
- states_value = [h, c, h2, c2]
-
- return decoded_sentence
-
-
- for seq_index in range(10):
- # Take one sequence (part of the training set)
- # for trying out decoding.
- input_seq = encoder_input_data[seq_index: seq_index + 1]
- decoded_sentence = decode_sequence(input_seq)
- print('-')
- print('Input sentence:', question_texts[seq_index])
- print('Decoded sentence:', decoded_sentence)
执行命令:
python seq2seq.py
参考资料:
https://www.jianshu.com/p/9dc9f41f0b29
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。