当前位置:   article > 正文

深入理解PyTorch中的nn.Embedding

nn.embedding

一、前置知识

1.1 语料库(Corpus)

太长不看版: NLP任务所依赖的语言数据称为语料库。

详细介绍版: 语料库(Corpus,复数是Corpora)是组织成数据集的真实文本或音频的集合。 此处的真实是指由该语言的母语者制作的文本或音频。 语料库可以由从报纸、小说、食谱、广播到电视节目、电影和推文的所有内容组成。 在自然语言处理中,语料库包含可用于训练 AI 的文本和语音数据。

1.2 词元(Token)

为简便起见,假设我们的语料库只有三个英文句子并且均已经过处理(全部小写+去掉标点符号):

corpus = ["he is an old worker", "english is a useful tool", "the cinema is far away"]
  • 1

我们往往需要将其词元化(tokenize)以成为一个序列,这里只需要简单的 split 即可:

def tokenize(corpus):
    return [sentence.split() for sentence in corpus]


tokens = tokenize(corpus)
print(tokens)
# [['he', 'is', 'an', 'old', 'worker'], ['english', 'is', 'a', 'useful', 'tool'], ['the', 'cinema', 'is', 'far', 'away']]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/363869
推荐阅读
相关标签