赞
踩
目标检测是对图像中的现有目标进行定位和分类的过程。识别的对象在图像中显示有边界框。一般的目标检测方法有两种:基于区域提议的和基于回归/分类的。这里使用一种基于回归/分类的方法,称为YOLO。
目录
COCO是一个大规模的对象检测,分割和字幕数据集。它包含80个对象类别用于对象检测。
下载以下GitHub存储库
https://github.com/pjreddie/darknethttps://github.com/pjreddie/darknet
创建一个名为config的文件夹,将darknet/cfg/coco.data、darknet/cfg/yolov3.cfg文件复制到config文件夹中。
创建一个名为data的文件夹,从以下链接获取coco.names文件,并将其放入data文件夹,coco.names文件包含COCO数据集中80个对象类别的列表。
darknet/data/coco.names at master · pjreddie/darknet · GitHubConvolutional Neural Networks. Contribute to pjreddie/darknet development by creating an account on GitHub.https://github.com/pjreddie/darknet/blob/master/data/coco.names将darknet/scripts/get_coco_dataset.sh文件复制到data文件夹中,并复制get_coco_cocoet.sh到data文件夹。接下来,打开一个终端并执行get_coco_cocoet.sh,该脚本将把完整的COCO数据集下载到名为coco的子文件夹中。也可通过以下链接下载coco数据集。
COCO2014_数据集-飞桨AI Studio星河社区 (baidu.com)https://aistudio.baidu.com/datasetdetail/165195
在images文件夹中,有两个名为train 2014和val 2014的文件夹,分别包含82783和40504个图像。在labels文件夹中,有两个名为train 2014和val 2014的标签,分别包含82081和40137文本文件。这些文本文件包含图像中对象的边界框坐标。此外,trainvalno5k.txt文件是一个包含117264张图像的列表,这些图像将用于训练模型。此列表是train2014和val2014中图像的组合,5000个图像除外。5k.txt文件包含将用于验证的5000个图像的列表。
完成数据集下载后,使用PyTorch的Dataset和Dataloader类创建训练和验证数据集和数据加载器。
- from torch.utils.data import Dataset
- from PIL import Image
- import torchvision.transforms.functional as TF
- import os
- import numpy as np
-
- import torch
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- print(torch.__version__)
- #定义CocoDataset类,并展示来自训练和验证数据集的一些示例图像
- class CocoDataset(Dataset):
- def __init__(self, path2listFile, transform=None, trans_params=None):
- with open(path2listFile, "r") as file:
- self.path2imgs = file.readlines()
-
- self.path2labels = [
- path.replace("images", "labels").replace(".png", ".txt").replace(".jpg", ".txt")
- for path in self.path2imgs]
-
- self.trans_params = trans_params
- self.transform = transform
-
- def __len__(self):
- return len(self.path2imgs)
-
- def __getitem__(self, index):
- path2img = self.path2imgs[index % len(self.path2imgs)].rstrip()
-
- img = Image.open(path2img).convert('RGB')
-
- path2label = self.path2labels[index % len(self.path2imgs)].rstrip()
-
- labels= None
- if os.path.exists(path2label):
- labels = np.loadtxt(path2label).reshape(-1, 5)
-
- if self.transform:
- img, labels = self.transform(img, labels, self.trans_params)
-
- return img, labels, path2img

- root_data="./data/coco"
- path2trainList=os.path.join(root_data, "trainvalno5k.txt")
-
- coco_train = CocoDataset(path2trainList)
- print(len(coco_train))
- # 从coco_train中获取图像、标签和图像路径
- img, labels, path2img = coco_train[1]
- print("image size:", img.size, type(img))
- print("labels shape:", labels.shape, type(labels))
- print("labels \n", labels)
- path2valList=os.path.join(root_data, "5k.txt")
- coco_val = CocoDataset(path2valList, transform=None, trans_params=None)
- print(len(coco_val))
- img, labels, path2img = coco_val[7]
- print("image size:", img.size, type(img))
- print("labels shape:", labels.shape, type(labels))
- print("labels \n", labels)
- import matplotlib.pylab as plt
- import numpy as np
- from PIL import Image, ImageDraw, ImageFont
- from torchvision.transforms.functional import to_pil_image
- import random
- %matplotlib inline
- path2cocoNames="./data/coco.names"
- fp = open(path2cocoNames, "r")
- coco_names = fp.read().split("\n")[:-1]
- print("number of classese:", len(coco_names))
- print(coco_names)
- def rescale_bbox(bb,W,H):
- x,y,w,h=bb
- return [x*W, y*H, w*W, h*H]
- COLORS = np.random.randint(0, 255, size=(80, 3),dtype="uint8")
- # fnt = ImageFont.truetype('Pillow/Tests/fonts/FreeMono.ttf', 16)
- fnt = ImageFont.truetype('arial.ttf', 16)
- def show_img_bbox(img,targets):
- if torch.is_tensor(img):
- img=to_pil_image(img)
- if torch.is_tensor(targets):
- targets=targets.numpy()[:,1:]
-
- W, H=img.size
- draw = ImageDraw.Draw(img)
-
- for tg in targets:
- id_=int(tg[0])
- bbox=tg[1:]
- bbox=rescale_bbox(bbox,W,H)
- xc,yc,w,h=bbox
-
- color = [int(c) for c in COLORS[id_]]
- name=coco_names[id_]
-
- draw.rectangle(((xc-w/2, yc-h/2), (xc+w/2, yc+h/2)),outline=tuple(color),width=3)
- draw.text((xc-w/2,yc-h/2),name, font=fnt, fill=(255,255,255,0))
- plt.imshow(np.array(img))
- np.random.seed(1)
- rnd_ind=np.random.randint(len(coco_train))
- img, labels, path2img = coco_train[rnd_ind]
- print(img.size, labels.shape)
-
- plt.rcParams['figure.figsize'] = (20, 10)
- show_img_bbox(img,labels)

- np.random.seed(1)
- rnd_ind=np.random.randint(len(coco_val))
- img, labels, path2img = coco_val[rnd_ind]
- print(img.size, labels.shape)
-
- plt.rcParams['figure.figsize'] = (20, 10)
- show_img_bbox(img,labels)
定义一个转换函数和传递给CocoDataset类的参数
- def pad_to_square(img, boxes, pad_value=0, normalized_labels=True):
- w, h = img.size
- w_factor, h_factor = (w,h) if normalized_labels else (1, 1)
-
- dim_diff = np.abs(h - w)
- pad1= dim_diff // 2
- pad2= dim_diff - pad1
-
- if h<=w:
- left, top, right, bottom= 0, pad1, 0, pad2
- else:
- left, top, right, bottom= pad1, 0, pad2, 0
- padding= (left, top, right, bottom)
-
- img_padded = TF.pad(img, padding=padding, fill=pad_value)
- w_padded, h_padded = img_padded.size
-
- x1 = w_factor * (boxes[:, 1] - boxes[:, 3] / 2)
- y1 = h_factor * (boxes[:, 2] - boxes[:, 4] / 2)
- x2 = w_factor * (boxes[:, 1] + boxes[:, 3] / 2)
- y2 = h_factor * (boxes[:, 2] + boxes[:, 4] / 2)
-
- x1 += padding[0] # 左
- y1 += padding[1] # 上
- x2 += padding[2] # 右
- y2 += padding[3] # 下
-
- boxes[:, 1] = ((x1 + x2) / 2) / w_padded
- boxes[:, 2] = ((y1 + y2) / 2) / h_padded
- boxes[:, 3] *= w_factor / w_padded
- boxes[:, 4] *= h_factor / h_padded
-
- return img_padded, boxes

- def hflip(image, labels):
- image = TF.hflip(image)
- labels[:, 1] = 1.0 - labels[:, 1]
- return image, labels
-
- def transformer(image, labels, params):
- if params["pad2square"] is True:
- image,labels= pad_to_square(image, labels)
-
- image = TF.resize(image,params["target_size"])
-
- if random.random() < params["p_hflip"]:
- image,labels=hflip(image,labels)
-
- image=TF.to_tensor(image)
- targets = torch.zeros((len(labels), 6))
- targets[:, 1:] = torch.from_numpy(labels)
-
- return image, targets

- trans_params_train={
- "target_size" : (416, 416),
- "pad2square": True,
- "p_hflip" : 1.0,
- "normalized_labels": True,
- }
- coco_train=CocoDataset(path2trainList,transform=transformer,trans_params=trans_params_train)
-
- np.random.seed(100)
- rnd_ind=np.random.randint(len(coco_train))
- img, targets, path2img = coco_train[rnd_ind]
- print("image shape:", img.shape)
- print("labels shape:", targets.shape)
-
- plt.rcParams['figure.figsize'] = (20, 10)
- COLORS = np.random.randint(0, 255, size=(80, 3),dtype="uint8")
- show_img_bbox(img,targets)

通过传递 transformer 函数来定义 CocoDataset 的一个对象来验证数据
- trans_params_val={
- "target_size" : (416, 416),
- "pad2square": True,
- "p_hflip" : 0.0,
- "normalized_labels": True,
- }
- coco_val= CocoDataset(path2valList,
- transform=transformer,
- trans_params=trans_params_val)
-
- np.random.seed(55)
- rnd_ind=np.random.randint(len(coco_val))
- img, targets, path2img = coco_val[rnd_ind]
- print("image shape:", img.shape)
- print("labels shape:", targets.shape)
-
- plt.rcParams['figure.figsize'] = (20, 10)
- COLORS = np.random.randint(0, 255, size=(80, 3),dtype="uint8")
- show_img_bbox(img,targets)

定义两个用于训练和验证数据集的数据加载器,从coco_train和coco_val中获取小批量数据。
- from torch.utils.data import DataLoader
-
- batch_size=8
- def collate_fn(batch):
- imgs, targets, paths = list(zip(*batch))
-
- targets = [boxes for boxes in targets if boxes is not None]
-
- for b_i, boxes in enumerate(targets):
- boxes[:, 0] = b_i
- targets = torch.cat(targets, 0)
- imgs = torch.stack([img for img in imgs])
- return imgs, targets, paths
-
- train_dl = DataLoader(
- coco_train,
- batch_size=batch_size,
- shuffle=True,
- num_workers=0,
- pin_memory=True,
- collate_fn=collate_fn,
- )
-
- torch.manual_seed(0)
- for imgs_batch,tg_batch,path_batch in train_dl:
- break
- print(imgs_batch.shape)
- print(tg_batch.shape,tg_batch.dtype)

- val_dl = DataLoader(
- coco_val,
- batch_size=batch_size,
- shuffle=False,
- num_workers=0,
- pin_memory=True,
- collate_fn=collate_fn,
- )
-
- torch.manual_seed(0)
- for imgs_batch,tg_batch,path_batch in val_dl:
- break
- print(imgs_batch.shape)
- print(tg_batch.shape,tg_batch.dtype)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。