赞
踩
①在pycharm和jupyter上,检查当前系统是否支持使用 NVIDIA 的 CUDA 加速计算
import torch
print(torch.cuda.is_available()) # True
②学习pytorch常用的一些方法:
dir():查看对象有什么属性
help():查看对象帮助文档
在pycharm中,可以按ctrl,鼠标点击对象,查询对象帮助文档。
在jupyter中,可以如下格式查询对象文档:对象??
ctrl + p 点击函数的括号,可以显示参数
③加载数据基础
常用两种类:
Dateset: 提供一种方式去获取数据及其label,并对数据编号,
主要实现功能:获取每一个数据及其label。告诉我们总共有多少的数据,
目录结构:
test.py代码:
from torch.utils.data import Dataset from PIL import Image import os class MyDate(Dataset): def __init__(self, root_dir, label_dir): self.root_dir = root_dir self.label_dir = label_dir self.path = os.path.join(self.root_dir, self.label_dir) self.img_path = os.listdir(self.path) def __getitem__(self, idx): # Dateset类规定的,必须重写此方法 img_name = self.img_path[idx] img_item_path = os.path.join(self.root_dir, self.label_dir,img_name) img = Image.open(img_item_path) label = self.label_dir return img, label def __len__(self): return len(self.img_path) root_dir = "dataset/train" ants_label_dir = "ants" bees_label_dir = "bees" ants_dataset = MyDate(root_dir, ants_label_dir) bees_dataset = MyDate(root_dir, bees_label_dir) train_dataset = ants_dataset + bees_dataset # 将两个数据集合并 data,label = ants_dataset.__getitem__(0) print(ants_dataset.img_path) print(label) # ants data.show() # 显示图像
Dateloader: 为后面的网络提供不同的数据形式。
import torchvision # 准备的测试数据集 from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor()) # batch_size是每次从数据集取的数据单元数量 # shuffle=True 表示每轮(epoch)选取数据单元时,是否打乱顺序 # num_workers表示执行程序的进程数量。在windows中,多进程执行容易报错。num_workers=0表示只有一个主进程 # drop_last=True 表示最后一组batch数量小于batch_size,则丢弃 test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True) writer = SummaryWriter("dataloader") for epoch in range(2): step = 0 for data in test_loader: imgs, targets = data # print(imgs.shape) # print(targets) writer.add_images("Epoch:{}".format(epoch), imgs, step) step = step + 1 writer.close()
tensorboard一个是可视化工具
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
# logs为事件文件所在文件夹
for i in range(100):
writer.add_scalar("y=3x",3*i,i) # scalar为标量
writer.close()
先运行上述代码,再在Terminal中执行如下指令:
tensorboard --logdir=logs
出现如下链接:
点击链接,弹出网页:
另外,还可以自定义端口,例:
tensorboard --logdir=logs --port=6007
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
writer = SummaryWriter("logs")
image_path = "dataset/train/bees/2227611847_ec72d40403.jpg"
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL) # 将img_PIL转化为numpy数组
print(type(img_array)) # <class 'numpy.ndarray'>
print(img_array.shape) # (450, 500, 3)
writer.add_image("train", img_array, 2, dataformats='HWC')
# HWC分别表示图像的高度、宽度、通道
writer.close()
注:运行上述代码,报错AttributeError: module ‘PIL.Image’ has no attribute ‘ANTIALIAS’。解决方法: pip install pillow==9.5.0
transforms主要用来对图片进行一些变化,即:
图片 → transforms的方法 → 结果
因为tensor方法包含神经网络使用的常用数据,所以常用ToTensor()类进行转换。
from PIL import Image from torchvision import transforms from torch.utils.tensorboard import SummaryWriter img_path = "dataset//train//bees//17209602_fe5a5a746f.jpg" img = Image.open(img_path) # 以PIL Image类型打开图片 tensor_trans = transforms.ToTensor() tensor_img = tensor_trans(img) # 参数img需要PIL Image or numpy.ndarray类型 print(type(tensor_img)) # <class 'torch.Tensor'> writer = SummaryWriter("logs") writer.add_image("Tensor_img", tensor_img) writer.close()
opencv是将图片以numpy.ndarray类型打开
import cv2 from torchvision import transforms from torch.utils.tensorboard import SummaryWriter img_path = "dataset//train//bees//17209602_fe5a5a746f.jpg" img = cv2.imread(img_path) tensor_trans = transforms.ToTensor() tensor_img = tensor_trans(img) print(type(tensor_img)) # <class 'torch.Tensor'> writer = SummaryWriter("logs") writer.add_image("Tensor_img2", tensor_img) writer.close()
from PIL import Image from torch.utils.tensorboard import SummaryWriter from torchvision import transforms writer = SummaryWriter("logs") img = Image.open("dataset//train//ants//0013035.jpg") print(img) # TOTensor trans_totensor = transforms.ToTensor() img_tensor = trans_totensor(img) writer.add_image("ToTensor", img_tensor) # Normalize print(img_tensor[0][0][0]) trans_norm = transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5]) img_norm = trans_norm(img_tensor) print(img_norm[0][0][0]) writer.add_image("Normalize", img_norm) # Resize print(img.size) trans_resize = transforms.Resize((512,512)) img_resize = trans_resize(img) print(img_resize) img_resize = trans_totensor(img_resize) writer.add_image("Resize",img_resize,0) # compose()中的参数需要一个列表,列表元素是transforms类型对象 # 输入数据从第一个列表元素开始,顺序执行。 # 前一个列表元素的输出结果,为后一个元素的输入数据 trans_resize_2 = transforms.Resize(100) trans_compose = transforms.Compose([trans_resize_2,trans_totensor]) img_resize_2 = trans_compose(img) writer.add_image("Resize", img_resize_2,1) # RandomCrop 随机裁剪 trans_random = transforms.RandomCrop(512) trans_compose_2 = transforms.Compose([trans_random, trans_totensor]) for i in range(9): img_crop = trans_compose_2(img) writer.add_image("RandomCrop",img_crop,i) writer.close()
以CIFAR10数据集为例:
import torchvision from torch.utils.tensorboard import SummaryWriter from torchvision import transforms dataset_transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor() ]) # root:数据集存放位置。 train:是否为训练集。 download:是否下载数据集,建议设置为True,这样即使下载了,也不会再下载 # 也可以提前把数据集下载到指定目录,下述代码不变,可以自动解压数据集 train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transform, download=True) test_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transform, download=True) # print(test_set[0]) # print(test_set.classes) # img, target = test_set[0] # target为label # print(test_set.classes[target]) # print(img.shape) # torch.Size([3, 32, 32]) # to_pil = transforms.ToPILImage() # pil_image = to_pil(img) # pil_image.show() writer = SummaryWriter("logs") for i in range(10): img, target = test_set[i] writer.add_image("test_set", img, i) writer.close()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。